Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36924605

RESUMO

Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.


Assuntos
Ácidos Graxos Ômega-3 , Gravidez , Feminino , Animais , Camundongos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lactação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Neurogênese , Hipocampo/metabolismo
2.
J Nutr Biochem ; 112: 109218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36375730

RESUMO

Maternal omega-3 (n-3) polyunsaturated fatty acids (PUFAs) deficiency can affect offspring's adiposity and metabolism by modulating lipid and glucose metabolism. However, the impact of n-3 PUFA deficiency on the development of fetal thermogenesis and its consequences is not reported. Using an n-3 PUFA deficient mice, we assessed fetal interscapular brown adipose tissue (iBAT), body fat composition, insulin growth factor-1 (IGF-1), glucose transporters (GLUTs), and expression of lipid storage & metabolic proteins in the offspring. The n-3 PUFA deficiency did not change the pups' calorie intake, organ weight, and body weight. However, the offspring's skeletal growth was altered due to excess fat to lean mass, reduced tibia & femur elongation, dysregulated IGF-1 in the mother and pups (P< .05). Localization of uncoupling protein 1 (UCP1) in iBAT exhibited a reduced expression in the deficient fetus. Further, UCP1, GLUT1, GPR120 were downregulated while FABP3, ADRP, GLUT4 expressions were upregulated in the BAT of the deficient offspring (P< .05). The deficiency decreased endogenous conversion of the n-3 LCPUFAs from their precursors and upregulated SCD1, FASN, and MFSD2A mRNAs in the liver (P< .05). An altered musculoskeletal growth in the offspring is associated with impaired browning of the fetal adipose, dysregulated thermogenesis, growth hormone, and expression of glucose and fatty acid metabolic mediators due to maternal n-3 PUFA deficiency. BAT had higher metabolic sensitivity compared to WAT in n-3 PUFA deficiency. Maternal n-3 PUFA intake may prevent excess adiposity by modulating fetal development of thermogenesis and skeletal growth dynamics in the mice offspring.


Assuntos
Ácidos Graxos Ômega-3 , Camundongos , Animais , Ácidos Graxos Ômega-3/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Tecido Adiposo Marrom/metabolismo , Desenvolvimento Fetal , Obesidade/metabolismo , Termogênese , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
J Nutr Biochem ; 96: 108784, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34062269

RESUMO

The maternal n-3 polyunsaturated fatty acid (PUFA) deficiency on decidual vascular structure and angiogenesis in mice placenta was investigated. Namely, we studied uterine artery remodeling, fatty acid metabolism, and placental epigenetic methylation in this animal model. Weanling female Swiss albino mice were fed either alpha-linolenic acid (18:3 n-3, ALA) deficient diets (0.13% energy from ALA) or a sufficient diet (2.26% energy from ALA) throughout the study. The dietary n-3 PUFA deficiency altered uteroplacental morphology and vasculature by reversing luminal to vessel area and increased luminal wall thickness at 8.5-12.5gD. Further, placentas (F0 and F1) showed a significant decrease in the expression of VCAM1, HLAG proteins and an increase in MMP9, KDR expression. The conversion of ALA to long-chain (LC) n-3 PUFAs was significantly decreased in plasma and placenta during the n-3 deficiency state. Reduced n-3 LCPUFAs increased the placental expression of intracellular proteins FABP3, FABP4, and ADRP to compensate decreased availability of these fatty acids in the n-3 deficient mice. The N-3 PUFA deficiency significantly increased the 5-methylcytosine levels in the placenta but not in the liver. The alteration in DNA methylation continued to the next generation in the placental epigenome with augmented expression of DNMT3A and DNMT3B. Our study showed that maternal n-3 PUFA deficiency alters placental vascular architecture and induces epigenetic changes suggesting the importance of n-3 PUFA intake during the development of the fetus. Moreover, the study shows that the placenta is the susceptible target for epigenetic alteration in maternal deficiency n-3 fatty acids.


Assuntos
Epigenoma , Ácidos Graxos Ômega-3/metabolismo , Placenta/irrigação sanguínea , Artéria Uterina/ultraestrutura , Animais , Metilação de DNA , Dieta , Feminino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Placenta/fisiologia , Gravidez , Artéria Uterina/fisiologia
4.
Cell Biol Int ; 44(5): 1237-1251, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32073198

RESUMO

Curcumin has a protective role in placental diseases like preeclampsia and preterm birth. Very little is known about its functional effects on growth, angiogenesis, and epigenetic activities of human first trimester placenta. HTR8/SVneo trophoblasts cells were used as model for human first trimester placenta. Effects of curcumin (≥80%) in these cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), radioactive thymidine uptake, quantitative real-time polymerase chain reaction (qRT-PCR), promoter DNA methylation, qRT-PCR array, tube formation, wound healing, and immunoblot assays. PC3 (prostate cancer), JEG-3 (trophoblast), and HMEC-1 (endothelial) cells were used as control in various experiments. Unlike in PC3 cells, curcumin stimulated growth, proliferation, and viability in HTR8/SVneo cells. Curcumin increased tube formation, and messenger RNA (mRNA) expression of angiogenic factors such as vascular endothelial growth factor A (VEGFA) and protein expression of proangiogenic factor VEGF receptor-2 and fatty acid-binding protein-4 (FABP4) in these cells. Curcumin-stimulated tube formation was associated with an increased expression of VEGFR2 and FABP4. The stimulatory effects of curcumin were inhibited by VEGFR2 (SU5416) and FABP4 (BMS309403) inhibitors. Curcumin also significantly increased both mRNA and protein expression of HLA-G in HTR8/SVneo cells. Curcumin increased mRNA expression of DNMT3A and NOTCH signaling system whereas down-regulated mRNA expression of HSD11ß2. Curcumin enhanced hypomethylation of gene promoters against oxidative stress and DNA damage pathway mediators. Curcumin promotes cell growth, migration, and thus angiogenic potential of these cells. Increased expression of HLA-G by curcumin, hitherto unknown, is a novel finding since HLA-G not only favors the immune environment for invasive trophoblasts but also positively modulates angiogenesis.


Assuntos
Curcumina/farmacologia , Antígenos HLA-G/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Reprod Toxicol ; 82: 72-79, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352284

RESUMO

Humans are exposed to Bisphenol A (BPA) from the consumer products and plastic substances. However, impacts of low levels of BPA exposure on placental developmental processes such as first trimester trophoblast cell growth, angiogenesis and epigenetic modifications are not well studied. Low concentration of BPA (1 nM) affected cell proliferation of human placental first trimester trophoblasts using a model cell, HTR8/SVneo. BPA abolished both basal- and vascular endothelial growth factor (VEGF)-stimulated tube formation in these cells. BPA significantly down regulated mRNA expression of VEGF, proliferating cell nuclear antigen, intercellular adhesion molecule 1 with concomitant upregulation of 11-ß-hydroxysteroid dehydrogenase 2 mRNA and protein expression in HTR8/SVneo cells. BPA also lowered CpG methylation of gene promoter associated with metabolic and oxidative stress. This study demonstrated that BPA at 1 nM not only affected cellular growth, development and angiogenic activities but also affected DNA methylation of stress response and down-regulation of angiogenic growth factors in first trimester trophoblast cells.


Assuntos
Compostos Benzidrílicos/toxicidade , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Estresse Fisiológico/genética , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Gravidez , Primeiro Trimestre da Gravidez/genética , Sulfonas/toxicidade , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...